

Cosmology with Gravitational Wave Standard Sirens

Ray Frey Neal Dalal, Daniel Holz

Relevant papers: <u>arXiv:1105.3184, arXiv:1108.6056, arXiv:1210.6362</u>

Standard Sirens

- Measurement of GWs from inspiraling binaries (NS-NS, NS-BH, BH-BH) can provide absolutely calibrated distance (Schutz 1986)
 - like SNIa, measures luminosity distance d_L
 - unlike SNIa, no calibration uncertainty. No distance ladder. d_L is measured in Mpc (not h⁻¹ Mpc). NO astrophysical systematics
- Basic idea: from GWs, measure both:
 - frequency chirp ⇒ total power in GW radiation
 - strain h_{ii} ⇒ infer GW flux at Earth

Ratio of luminosity/flux gives distance d_L

GW Detectors

- Ground-based:
 - LIGO:
 - 2 detectors, in Livingston LA and Hanford WA
 - upgrade to aLIGO: 2015
 - Virgo (France/Italy)
 - KAGRA (Japan)
 - LIGO-India?
- Satellite:
 - eLISA: ???

The 2nd generation GW detector network

Sources

ground-based GW detector networks (e.g. LIGO +Virgo+Kagra) are sensitive to nearby stellar mass BNS, NS-BH, BBH inspirals, $z \leq 0.2$.

- too close to measure dark energy, but instead will constrain Hubble constant H₀
- relevant frequencies: f≈1-10 Hz to kHz, events are in band for ~ minutes
- satellite missions (eLISA) probe supermassive black hole mergers out to high redshift (z~2)
 - relevant frequencies: $f \approx \text{mHz}$, sources in band for ~ year

Compact binary coalescence: expected rates

arXiv: 1003.2480,

CQG, (LSC, Virgo)

TABLE V: Detection rates for compact binary coalescence sources.

IFO	Source ^a	$\dot{N}_{ m low}$	$\dot{N}_{ m re}$	$\dot{N}_{ m high}$	$\dot{N}_{ m max}$
		$ m yr^{-1}$	yr^{-1}	${ m yr}^{-1}$	yr^{-1}
	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
Initial	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^b$	0.01^{c}
	IMBH-IMBH			10^{-4d}	10^{-3e}
	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
Advanced	BH-BH	0.4	20	1000	
	IMRI into IMBH			10^{b}	300^{c}
	IMBH-IMBH			0.1^{d}	1^e

Short GRB rates consistent with this. But also uncertain (due to beaming angle) Fong and Berger, arXiv:1204.5475

Projected Advanced LIGO BNS Detection Rates

$$N_{re} = \frac{T_{obs}}{\text{Mpc}^3 \text{Myr}} \times \frac{4}{3} \pi D_{avg,BNS}^3$$

by permission of G. Gonzalez, AAS 2013

Limitations

- Since GW emission is not isotropic, we need to know the inclination of orbital plane to measure distance
 - can infer this from GW polarization requires 2 or more non-aligned detectors (e.g. LIGO + (Virgo or Kagra or LIGO-India)
 - Or infer from beaming for short GRBs due to binary mergers
- Since GR is scale free, GW provide no redshift information
 - we therefore require an independent measurement of redshift, from EM emission

Distance forecasts

- expect fractional errors on H₀ of $\sim 0.05 (N/10)^{-1/2}$ for N events, using 3-detector ground-based network
- Number of detected events increases significantly as size of network increases
- Smaller errors for eLISA sources. Noise is dominated by gravitational lensing

A precision measurement of the Hubble constant, coupled with constraints at high redshift from the CMB, give a tremendous lever arm to measure properties of the dark energy equation of state. Measuring H0 removes a key uncertainty currently limiting our knowledge of the dark energy equation-of-state.

DE Sensitivity

To gauge the <u>sensitivity</u> to the DE EOS, Dalal et al calculated the error on H0 and was a function of the number of BNS events.

Assumptions:

- 1% CMB $\Omega_{\rm m}h^2$
- flat universe
- w constant

10

Role of precision H0

- Precision H0 will aid other DE probes
- FOM from DETF
- From Weinberg et al. (2012):
- ➤ Assuming a w0 w_a model for dark energy, a 1% H0 measurement would are raise the DETF Figure of Merit by 40%
- A precise determination of H0, coupled to a w(z) parameterization that allows low-redshift variation, could ... definitively answer the basic question, "Is the universe still accelerating?"

EM counterparts

- Need redshifts to measure H0
- Requires independent observations of any EM emission
- Two possibilities:
 - independent trigger (e.g. GRB detection from all-sky yray satellite) provides space-time coordinates for GW search
 - follow-up of GW trigger
 - e.g. off-axis GRB afterglow or isotropic kilonova afterglow

 Follow-up of GW sources requires good localization on the sky

Localization

NS-NS binary inspirals

Fairhurst et al., arXiv:0908.2356; 1010.6192; 1205.6611

For 4-element networks expect ~ 10 deg²

Identifying EM counterparts

- EM follow-up (optical, X-ray, radio...) must tile the GW error box
- However, we expect the EM flux to fade quickly (reach r>24 in ~ day)
- need to cover error box quickly ⇒ need fast, widearea imagers

e.g. see analysis by Metzger & Berger arXiv:1108.6056

Wide-field imaging

- This requires target-of-opportunity imaging on observatories with large etendue
 - LSST obviously ideal. Reaches r ≈ 24.5 in 15 seconds over 9.6 deg² FOV, so it can cover error box within minutes
 - but other wide-area imagers may be adequate, e.g. DECam reaches r ≈ 24.5 in < 2 minutes over 3 deg² FOV, so it can cover error box within hours. HSC even faster (and is in the North, so it's complementary)
 - BUT: we don't know how faint the optical emission will be. If much fainter than GRB afterglows, then LSST ToO may be necessary.
 - the broader the latitude & longitude coverage, the higher the fraction of events that are followed up

15

Summary

- GW measurements of compact binary mergers at low z ...
 - provide check of distance ladder
 - with enough events provide precision H0 measurement which, when combined with other measurements, improves DE constraints
- Requires independent observations of any EM emission
 - Short GRB-triggered GW search
 - GW-triggered EM followup

Expect the experimental program to bring results during the period 2015-2020